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randnet-package Statistical modeling of random networks with model estimation, selec-
tion and parameter tuning

Description

The package provides model fitting and estimation functions for some popular random network
models. More importantly, it implements a general cross-validation framework for model selection
and parameter tuning called ECV. Several other model selection methods are also included. The
work to build and improve this package is partially supported by the NSF grants DMS-2015298 and
DMS-2015134.

Details

Package: randnet
Type: Package
Version: 1.0
Date: 2025-07-28
License: GPL (>=2)
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Ma, Z., Ma, Z. and Yuan, H., 2020. Universal latent space model fitting for large networks with
edge covariates. Journal of Machine Learning Research, 21(4), pp.1-67.

BHMC.estimate Estimates the number of communities under block models by the spec-
tral methods

Description

Estimates the number of communities under block models by using the spectral properties of net-
work Beth-Hessian matrix with moment correction.

Usage

BHMC.estimate(A, K.max = 15)

Arguments

A adjacency matrix of the network

K.max the maximum possible number of communities to check
Details

Note that the method cannot distinguish SBM and DCSBM. But it works under either model.

Value

A list of result

K Estimated K
values eigenvalues of the Beth-Hessian matrix
Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>
References
C. M. Le and E. Levina. Estimating the number of communities in networks by spectral methods.
arXiv preprint arXiv:1507.00827, 2015.
See Also

LRBIC,ECV.Block, NCV.select
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Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0.9,simple=FALSE, power=TRUE)

A <- dt$A

bhmc <- BHMC.estimate(A,15)

bhmc

BlockModel.Gen Generates networks from degree corrected stochastic block model

Description

Generates networks from degree corrected stochastic block model, with various options for node
degree distribution

Usage
BlockModel.Gen(lambda, n, beta = @, K = 3, w = rep(1, K),

Pi = rep(1, K)/K, rho = @, simple = TRUE, power = TRUE,
alpha = 5, degree.seed = NULL)

Arguments

lambda average node degree

n size of network

beta out-in ratio: the ratio of between-block edges over within-block edges

K number of communities

w not effective

Pi a vector of community proportion

rho proportion of small degrees within each community if the degrees are from two
point mass disbribution. rho >0 gives degree corrected block model. If tho > 0
and simple=TRUE, then generate the degrees from two point mass distribution,
with rho porition of 0.2 values and 1-rho proportion of 1 for degree parameters.
If rtho=0, generate from SBM.

simple Indicator of wether two point mass degrees are used, if rho > 0. If rho=0, this is
not effective

power Whether or not use powerlaw distribution for degrees. If FALSE, generate from

theta from U(0.2,1); if TRUE, generate theta from powerlaw. Only effective if
rho >0, simple=FALSE.

alpha Shape parameter for powerlaw distribution.



degree.seed

Value

A list of

A

g
P

theta

Author(s)

ConsensusClust

Can be a vector of a prespecified values for theta. Then the function will do
sampling with replacement from the vector to generate theta. It can be used to
control noise level between different configuration settings.

the generated network adjacency matrix
community membership
probability matrix of the network

node degree parameter

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>

References

B. Karrer and M. E. Newman. Stochastic blockmodels and community structure in networks. Phys-
ical Review E, 83(1):016107, 2011.

A. A. Amini, A. Chen, P. J. Bickel, and E. Levina. Pseudo-likelihood methods for community
detection in large sparse networks. The Annals of Statistics, 41(4):2097-2122, 2013.

T. Li, E. Levina, and J. Zhu. Network cross-validation by edge sampling. Biometrika, 107(2),

pp.257-276, 2020.

Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0.9,simple=FALSE, power=TRUE)

ConsensusClust

clusters nodes by concensus (majority voting) initialized by regular-
ized spectral clustering

Description

community detection by concensus (majority voting) initialized by regularized spectral clustering

Usage

ConsensusClust(A,K, tau=0.25,1ap=TRUE)
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Arguments
A adjacency matrix
K number of communities
tau reguarlization parameter for regularized spectral clustering. Default value is
0.25. Typically set between 0 and 1. If tau=0, no regularization is applied.
lap indicator. If TRUE, the Laplacian matrix for initializing clustering. If FALSE,
the adjacency matrix will be used.
Details

Community detection algorithm by majority voting algorithm of Gao et. al. (2016). When ini-
tialized by regularized spectral clustering, it is shown that the clustering accuracy of this algorithm
gives minimax rate under the SBM. However, it can slow compared with spectral clustering.

Value

cluster labels

Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu

Maintainer: Tianxi Li <tianxili@umn.edu>

References

Gao, C.; Ma, Z.; Zhang, A. Y. & Zhou, H. H. Achieving optimal misclassification proportion in
stochastic block models The Journal of Machine Learning Research, JMLR. org, 2017, 18, 1980-
2024

See Also

reg.SP

Examples

dt <- BlockModel.Gen(15,50,K=2,beta=0.2,rho=0)

A <- dt$A

cc <- ConsensusClust(A,K=2,1ap=TRUE)
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DCSBM.estimate Estimates DCSBM model

Description

Estimates DCSBM model by given community labels

Usage

DCSBM.estimate(A, g)

Arguments

A adjacency matrix

g vector of community labels for the nodes
Details

Estimation is based on maximum likelhood.

Value
A list object of
Phat estimated probability matrix
B the B matrix with block connection probability, up to a scaling constant
Psi vector of of degree parameter theta, up to a scaling constant
Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>
References
B. Karrer and M. E. Newman. Stochastic blockmodels and community structure in networks. Phys-
ical Review E, 83(1):016107, 2011.
See Also

SBM.estimate
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Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0.9,simple=FALSE, power=TRUE)

A <- dt$A

ssc <- reg.SSP(A,K=3,1lap=TRUE)

est <- DCSBM.estimate(A,ssc$cluster)

ECV.block selecting block models by ECV

Description
Model selection by ECV for SBM and DCSBM. It can be used to select between the two models or
given on model (either SBM or DCSBM) and select K.

Usage

ECV.block(A, max.K, cv =NULL, B = 3, holdout.p=0.1, tau =0, dc.est = 2, kappa = NULL)

Arguments
A adjacency matrix
max.K largest possible K for number of communities
cv cross validation fold. The default value is NULL. We recommend to use the
argument B instead, doing indpendent sampling.
B number of replications
holdout.p testing set proportion
tau constant for numerical stability only. Not useful for current version.
dc.est estimation method for DCSBM. By defaulty (dc.est=2), the maximum likeli-
hood is used. If dc.est=1, the method used by Chen and Lei (2016) is used,
which is less stable according to our observation.
kappa constant for numerical stability only. Not useful for current version.
Details

The current version is based on a simple matrix completion procedure, as described in the paper.
The performance can be improved by better matrix completion method that will be implemented in
next version. Moreover, the current implementation is better in computational time but less efficient
in memory. Another memory efficient implementation will be added in next version.
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Value
impute.err average validaiton imputation error
12 average validation L_2 loss under SBM
dev average validation binomial deviance loss under SBM
auc average validation AUC
dc.12 average validation L_2 loss under DCSBM
dc.dev average validation binomial deviance loss under DCSBM
sse average validation SSE
12.model selected model by L_2 loss
dev.model selected model by binomial deviance loss

12.mat, dc.12.mat, ...
cross-validation loss matrix for B replications

Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>

References

T. Li, E. Levina, and J. Zhu. Network cross-validation by edge sampling. Biometrika, 107(2),
pp-257-276, 2020.

See Also

NCV.select

Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0.9,simple=FALSE, power=TRUE)

A <- dt$A

ecv <- ECV.block(A,6,B=3)
ecv$12.model
ecv$dev.model
which.min(ecv$12)

which.min(ecv$dev)

which.min(ecv$dc.12)
which.min(ecv$dc.dev)

which.max(ecv$auc)
which.min(ecv$sse)
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ECV.nSmooth. lowrank selecting tuning parameter for neighborhood smoothing estimation of
graphon model

Description

selecting tuning parameter for neighborhood smoothing estimation of graphon model where the
tuning parameter is to control estimation smoothness.

Usage

ECV.nSmooth.lowrank(A, h.seq, K, cv = NULL, B = 3, holdout.p = 0.1)

Arguments
A adjacency matrix
h.seq a sequence of h values to tune. It is suggested h should be in the order of
sqrt(log(n)/n).
K the optimal rank for approximation. Can be obtained by rank selection of ECV.
cv cross-validation fold. Recomend to use replication number B instead.
B independent replication number of random splitting
holdout.p proportion of test sample
Details

The neighborhood smoothing estimation can be slow, so the ECV may take long even for moder-
ately large networks.

Value

a list object with

err average validation error for h.seq
min.index index of the minimum error
Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>

References

T. Li, E. Levina, and J. Zhu. Network cross-validation by edge sampling. Biometrika, 107(2),
pp.257-276, 2020.
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Examples

set.seed(500)
N <- 300

[y
|

= matrix(1:N,nrow=1) / (N+1)
V = matrix(1:N,nrow=1) / (N+1)

=
1

(tU))~2
W/3%cos(1/(W + 1e-7)) + 0.15

=
1

upper.index <- which(upper.tri(W))

A <- matrix(Q,N,N)

rand.ind <- runif(length(upper.index))

edge.index <- upper.index[rand.ind < W[upper.index]]
Aledge.index] <- 1

A<= A+ t(A)

diag(A) <- @

h.seq <- sqrt(log(N)/N)*seq(@.5,5,by=0.5)

ecv.nsmooth <- ECV.nSmooth.lowrank(A,h.seq,K=2,B=3)

h <- h.seqg[ecv.nsmooth$min.index]

ECV.Rank estimates optimal low rank model for a network

Description

estimates the optimal low rank model for a network

Usage

ECV.Rank(A, max.K, B = 3, holdout.p = 0.1, weighted = TRUE,mode="directed")
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Arguments
A adjacency matrix
max.K maximum possible rank to check
B number of replications in ECV
holdout.p test set proportion
weighted whether the network is weighted. If TRUE, only sum of squared errors are com-
puted. If FALSE, then treat the network as binary and AUC will be computed
along with SSE.
mode Selectign the mode of "directed" or "undirected" for cross-validation.
Details

AUC is believed to be more accurate in many simulations for binary networks. But the computation
of AUC is much slower than SSE, even slower than matrix completion steps.

Note that we do not have to assume the true model is low rank. This function simply finds a best
low-rank approximation to the true model.

Value
A list of
sse.rank rank selection by SSE loss
auc.rank rank selection by AUC loss
auc auc sequence for each rank candidate
sse sse sequence for each rank candidate
Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>

References

T. Li, E. Levina, and J. Zhu. Network cross-validation by edge sampling. Biometrika, 107(2),
pp.257-276, 2020.

See Also
ECV.block

Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0.9,simple=FALSE, power=TRUE)

A <- dt$A
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ecv.rank <- ECV.Rank(A,6,weighted=FALSE,mode="undirected")

ecv.rank

InformativeCore identify the informative core component of a network

Description
identify the informative core component of a network based on the spectral method of Miao and Li
(2021). It can be used as a general data processing function for any network modeling purpose.
Usage

InformativeCore(A, r=3)

Arguments
A adjacency matrix. It does not have to be unweighted.
r the rank for low-rank denoising. The rank can be selected by ECV or any other
methods availale in the package.
Details

The function can be used as a general data processing function for any network modeling purpose.
It automatically identify an informative core component with interesting connection structure and a
noninformative periphery component with uninterestings structures. Depending on the user’s pref-
erence, the uninteresting structure can be either the Erdos-Renyi type connections or configuration
type of connections, both of which are generally regarded as noninformative structures. Including
these additional non-informative structures in network models can potentially lower the modeling
efficiency. Therefore, it is preferable to remove them and only focus on the core structure. Details
can be found in the reference.

Value
A list of

er.score A n dimensional vector of informative scores for ER-type periphery. A larger
score indicates the corresponding node is more likely to be in the core.
config.score A n dimensional vector of informative scores for configuration-type periphery.
A larger score indicates the corresponding node is more likely to be in the core.
er.theory.core The indices of identified core structure in the ER-type model based on a theo-
retical threshold of the scores (for large sample size).
config.theory.core
The indices of identified core structure in the configuration-type model based on
a theoretical threshold of the scores (for large sample size).
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er.kmeans.core The indices of identified core structure in the ER-type model based on kmeans
clustering of the scores.

config.kmeans.core
The indices of identified core structure in the configuration-type model based on
kmeans clustering of the scores (for large sample size).

Author(s)
Tianxi Li, Elizaveta Levina, Ji Zhu, Can M. Le
Maintainer: Tianxi Li <tianxili@umn.edu>
References
Miao, Ruizhong, and Tianxi Li. "Informative core identification in complex networks." Journal of
the Royal Statistical Society Series B: Statistical Methodology 85.1 (2023): 108-126.

See Also
ECV.Rank

Examples

set.seed(100)

dt <- BlockModel.Gen(60,1000,K=3,beta=0.2,rho=0.9,simple=FALSE, power=TRUE)
### this is not an interesting case -- only for demonstration of the usage.
### The network has no periphery nodes, all nodes are in the core.

A <- dt$A
core.fit <- InformativeCore(A,r=3)

length(core.fit$er.theory.core)
#i## essentially all nodes are selected as the core.

k.core identify the K-core component of a network

Description

identify the K-core component of a network

Usage
k.core(A,K)

Arguments

A adjacency matrix.

K lower bound of the degree.
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Details

The function can be used as a general data processing function to extrat denser component of a
network. The algorithm is iteratively filter components with degree below K, following Wang and
Rohe (2016).

Value

A list of

A The resulting adjacency matrix.

Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu, Can M. Le
Maintainer: Tianxi Li <tianxili@umn.edu>

References

Wang S. and Rohe, K, Discussion of "coauthorship and citation networks for statisticians". The
Annals of Applied Statistics, 10(4):1820-1826, 2016.

See Also

InformativeCore

Examples

set.seed(100)

dt <- BlockModel.Gen(60,1000,K=3,beta=0.2,rho=0.9,simple=FALSE, power=TRUE)
### this is not an interesting case -- only for demonstration of the usage.
### The network has no periphery nodes, all nodes are in the core.

A <- dt$A

kc <- k.core(A,K=3)
dim(kc)

LRBIC selecting number of communities by asymptotic likelihood ratio

Description

selecting number of communities by asymptotic likelihood ratio based the methdo of Wang and
Bickel 2015
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Usage

LRBIC(A, Kmax, lambda = NULL, model = "both")

Arguments
A adjacency matrix
Kmax the largest possible number of communities to check
lambda a tuning parameter. By default, will use the number recommended in the paper.
model selecting K under which model. If set to be "SBM", the calculation will be done
under SBM. If set to be "DCSBM", the calculation will be done under DCSBM.
The default value is "both" so will give two selections under SBM and DCSBM
respectively.
Details

Note that the method cannot distinguish SBM and DCSBM, though different calculation is done
under the two models. So it is not valid to compare across models. The theoretical analysis of the
method is done under maximum likelhood and variational EM. But as suggested in the paper, we
use spectral clustering for community detection before fitting maximum likelhood.

Value
a list of
SBM.K estimated number of communities under SBM
DCSBM.K estimated number of communities under DCSBM
SBM.BIC the BIC values for the K sequence under SBM
DCSBM.BIC the BIC values for the K sequence under DCSBM
Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>
References
Wang, Y. R. & Bickel, P. J. Likelihood-based model selection for stochastic block models The
Annals of Statistics, Institute of Mathematical Statistics, 2017, 45, 500-528
See Also

BHMC.estimate, ECV.block, NCV.select
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Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0.9,simple=FALSE, power=TRUE)

A <- dt$A

### test LRBIC
lrbic <- LRBIC(A,6,model="both")
lrbic$SBM.K

1rbic$DCSBM.K

LSM.PGD estimates inner product latent space model by projected gradient de-
scent

Description
estimates inner product latent space model by projected gradient descent from the paper of Ma et
al. (2020).

Usage

LSM.PGD(A, k,step.size=0.3,niter=500,trace=0)

Arguments

A adjacency matrix

k the dimension of the latent position

step.size step size of gradient descent

niter maximum number of iterations

trace if trace > 0, the objective will be printed out after each iteration
Details

The method is based on the gradient descent of Ma et al (2020), with initialization of the universal
singular value thresholding as discussed there. The parameter identifiability constraint is the same
as in the paper.
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Value
a list of
Z latent positions
alpha individual parameter alpha as in the paper
Phat esitmated probability matrix
obj the objective of the gradient method
Author(s)

Tianxi Li and Can M. Le
Maintainer: Tianxi Li <tianxili@umn.edu>

References

Z. Ma, Z. Ma, and H. Yuan. Universal latent space model fitting for large networks with edge
covariates. Journal of Machine Learning Research, 21(4):1-67, 2020.

See Also

DCSBM.estimate

Examples

dt <- RDPG.Gen(n=600,K=2,directed=TRUE)

A <- dt$A

fit <- LSM.PGD(A,2,niter=50)

NCV.select selecting block models by NCV

Description

selecting block models by NCV of Chen and Lei (2016)

Usage

NCV.select(A, max.K, cv = 3)



20 NCV.select

Arguments
A adjacency matrix
max.K largest number of communities to check
cv fold of cross-validation

Details

Spectral clustering is used for fitting the block models

Value
a list of
dev the binomial deviance loss under SBM for each K
12 the L_2 loss under SBM for each K
dc.dev the binomial deviance loss under DCSBM for each K
dc.12 the L_2 loss under DCSBM for each K
dev.model the selected model by deviance loss
12.model the selected model by L_2 loss

sbm.12.mat, sbm.dev.mat, ....

the corresponding matrices of loss for each fold (row) and each K value (col-
umn)

Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>

References

Chen, K. & Lei, J. Network cross-validation for determining the number of communities in network
data Journal of the American Statistical Association, Taylor & Francis, 2018, 113, 241-251

See Also
ECV.block

Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0.9,simple=FALSE, power=TRUE)

A <- dt$A

ncv <- NCV.select(A,6,3)

ncv$12.model
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ncv$dev.model

which.min(ncv$dev)
which.min(ncv$12)

which.min(ncv$dc.dev)
which.min(ncv$dc.12)

network.mixing estimates network connection probability by network mixing

Description

estimates network connection probability by network mixing of Li and Le (2021).

Usage

network.mixing(A, index=NULL,rho = 0.1,max.K=15,dcsbm=TRUE, usvt=TRUE,ns=FALSE,
1sm=FALSE, 1sm.k=4, trace=FALSE)

Arguments

A adjacency matrix

index a pre-specified hold-out set. If NULL, the set will be randomly generated ac-
cording to rho.

rho hold-out proportion as validation entries. Only effective when index is NULL.

max.K the maximum number of blocks used for the block model approximation (see
details).

dcsbm whether to include the DCSBM as components, up to max.K. By default, the
method will include it.

usvt whether to include the USVT as a component. By default, the method will
include it.

ns whether to include the neighborhood smoothing as a component.

lsm whether to include the gradient estimator of the latent space model as a compo-
nent.

Ism.k the dimension of the latent space. Only effective if 1sm is TRUE.

trace whether to print the model fitting progress.
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Details

The basic version of the mixing estimator will include SBM and DCSBM estimates with the number
of blocks from 1 to max.K. Users could also specify whether to include additional USVT, neighbor-
hood smoothing and latent space model estimators. If NNL (non-negative linear), exponential, or
ECV is used, the mixing is usually robust for a reasonable range of max.K and whether to include
the other models. The linear mixing, however, is vulnerable for a large number of base estimates.
The NNL is our recommended method. USVT is also recommended. the neighborhood smoothing
and latent space model are slower, so are not suitable for large networks. Details can be found in Li
and Le (2021).

Value

a list of

linear.Phat estimated probability matrix by linear mixing

linear.weight the weights of the indivdiual models in linear mixing

nnl.Phat estimated probability matrix by NNL mixing

nnl.weight the weights of the indivdiual models in NNL mixing

exp.Phat estimated probability matrix by exponential mixing

exp.weight the weights of the indivdiual models in exponential mixing

ecv.Phat estimated probability matrix by ECV mixing (only one nonzero)

ecv.weight the weights of the indivdiual models in ECV mixing (only one nonzero)

model.names the names of all individual models, in the same order as the weights
Author(s)

Tianxi Li and Can M. Le

Maintainer: Tianxi Li <tianxili@umn.edu>

References

Li, Tianxi, and Can M. Le. "Network estimation by mixing: Adaptivity and more." Journal of the
American Statistical Association 119.547 (2024): 2190-2205.

Examples

dt <- RDPG.Gen(n=500,K=5,directed=TRUE)
A <- dt$A

fit <- network.mixing(A)
fit$model.names

fit$nnl.weight
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network.mixing.Bfold estimates network connection probability by network mixing with B-
fold averaging

Description
estimates network connection probability by network mixing of Li and Le (2021) with B-fold aver-
aging.

Usage

network.mixing.Bfold(A,B=10,rho = @.1,max.K=15,dcsbm=TRUE, usvt=TRUE,ns=FALSE,
1sm=FALSE,1sm.k=4)

Arguments
A adjacency matrix
B number of random replications to average over
rho hold-out proportion as validation entries. Only effective when index is NULL.
max.K the maximum number of blocks used for the block model approximation (see
details).
dcsbm whether to include the DCSBM as components, up to max.K. By default, the
method will include it.
usvt whether to include the USVT as a component. By default, the method will
include it.
ns whether to include the neighborhood smoothing as a component.
lsm whether to include the gradient estimator of the latent space model as a compo-
nent.
Ism.k the dimension of the latent space. Only effective if 1sm is TRUE.
Details

This is essentially the same procedure as the network.mixing, but repeat it B times and return the
average. Use with cautious. Though it can make the estimate more stable, the procedure would
increase the computational cost by a factor of B. Based on our limited experience, this is usually
not a great trade-off as the improvement might be marginal.

Value
a list of
linear.Phat estimated probability matrix by linear mixing
nnl.Phat estimated probability matrix by NNL mixing
exp.Phat estimated probability matrix by exponential mixing
ecv.Phat estimated probability matrix by ECV mixing (only one nonzero)

model.names the names of all individual models, in the same order as the weights
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Author(s)
Tianxi Li and Can M. Le

Maintainer: Tianxi Li <tianxili@umn.edu>

References

Li, Tianxi, and Can M. Le. "Network estimation by mixing: Adaptivity and more." Journal of the
American Statistical Association 119.547 (2024): 2190-2205.

See Also

network.mixing

Examples

dt <- RDPG.Gen(n=200,K=3,directed=TRUE)
A <- dt$A

fit <- network.mixing.Bfold(A,B=2)

NMI calculates normalized mutual information

Description
calculates normalized mutual information, a metric that is commonly used to compare clustering
results

Usage
NMI(gl1, g2)

Arguments

g1 a vector of cluster labels

g2 a vector of cluster labels (same length as gl)

Value

NMI value

Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>
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Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0.9,simple=FALSE, power=TRUE)

A <- dt$A

ssc <- reg.SSP(A,K=3,1lap=TRUE)

NMI(ssc$cluster,dt$g)

NSBM.estimate estimates nomination SBM parameters given community labels by the
method of moments

Description

estimates NSBM parameters given community labels

Usage

NSBM.estimate(A,K, g, reg.bound=-Inf)

Arguments
A adjacency matrix of a directed where Aij =1 iff i ->j
K number of communities
g a vector of community labels
reg.bound the regularity lower bound of lambda value. By default, -Inf. That means, no
constraints. When the network is sparse, using certain constaints may improve
stability.
Details

The method of moments is used for estimating the edge nomination SBM, so the strategy can be
used for both unweighted and weighted networks. The details can be found in Li et. al. (2023).

Value
a list of
B estimated block connection probability matrix
lambda estimated lambda values for nomination intensity
theta estimated theta values for nomination preference
P.tilde estimated composiste probability matrix after nomination

g community labels
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Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>

References

Li, T., Levina, E. and Zhu, J., 2023. Community models for networks observed through edge
nominations. Journal of Machine Learning Research, 24(282), pp.1-36.

See Also

SBM.estimate

Examples

dt <- NSBM.Gen(n=200,K=2,beta=0.2,avg.d=10)

A <- dt$A

sc <- RightSC(A,K=3)
est <- NSBM.estimate(A,K=3,g=sc$cluster)

NSBM. Gen Generates networks from nomination stochastic block model

Description
Generates networks from nomination stochastic block model for community structure in edge nom-
ination procedures, proposed in Li et. al. (2023)

Usage

NSBM.Gen( n, K, avg.d,beta,theta.low=0.1,
theta.p=0.2,1lambda.scale=0.2,lambda.exp=FALSE)

Arguments
n size of network
K number of communities
avg.d expected average degree of the resuling network (after edge nomination)
beta the out-in ratio of the original SBM
theta.low the lower value of theta’s. The theta’s are generated as two-point mass at theta.low

and 1.
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theta.p proportion of lower value of theta’s
lambda.scale  standard deviation of the lambda (before the exponential, see lambda.exp)

lambda.exp If TRUE, lambda is generated as exponential of uniformation random randomes.
Otherwise, they are normally distributed.

Value
A list of
A the generated network adjacency matrix
g community membership
P probability matrix of the orignal SBM network
P.tilde probability matrix of the observed network after nomination
B B parameter
lambda lambda parameter
theta theta parameter
Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>
References
Li, T., Levina, E. and Zhu, J., 2023. Community models for networks observed through edge

nominations. Journal of Machine Learning Research, 24(282), pp.1-36.

Examples

dt <- NSBM.Gen(n=200,K=2,beta=0.2,avg.d=10)

nSmooth estimates probabilty matrix by neighborhood smoothing

Description

estimates probabilty matrix by neighborhood smoothing of Zhang et. al. (2017)

Usage

nSmooth(A, h = NULL)
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Arguments
A adjacency matrix
h quantile value used for smoothing. Recommended to be in the scale of sqrt(log(n)/n)
where n is the size of the network. The default value is sqrt(log(n)/n) from the
paper.
Details

The method assumes a graphon model where the underlying graphon function is piecewise Lipchitz.
However, it may be slow for moderately large networks, though it is one of the fastest methods for
graphon models.

Value

the probability matrix

Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>

References

Zhang, Y.; Levina, E. & Zhu, J. Estimating network edge probabilities by neighbourhood smoothing
Biometrika, Oxford University Press, 2017, 104, 771-783

Examples
N <- 100
U = matrix(1:N,nrow=1) / (N+1)
V = matrix(1:N,nrow=1) / (N+1)
W= (t(U)*2
W = W/3xcos(1/(W + 1e-7)) + 0.15

upper.index <- which(upper.tri(W))

A <- matrix(@Q,N,N)

rand.ind <- runif(length(upper.index))
edge.index <- upper.index[rand.ind < W[upper.index]]
Aledge.index] <- 1

A<= A+ t(A)
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diag(A) <- 0

What <- nSmooth(A)

RDPG. Gen generates random networks from random dot product graph model

Description

generates random networks from random dot product graph model

Usage
RDPG.Gen(n, K, directed = TRUE, avg.d = NULL)

Arguments

n size of the network

K dimension of latent space

directed whether the network is directed or not

avg.d average node degree of the network (in expectation)
Details

The network is generated according to special formulation mentioned in ECV paper.

Value
a list of
A the adjacency matrix
P the probability matrix
Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>

References

S. J. Young and E. R. Scheinerman. Random dot product graph models for social networks. In
International Workshop on Algorithms and Models for the Web-Graph, pages 138-149. Springer,
2007. T. Li, E. Levina, and J. Zhu. Network cross-validation by edge sampling. Biometrika, 107(2),
pp-257-276, 2020.
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Examples

dt <- RDPG.Gen(n=600,K=2,directed=TRUE)

A <- dt$A

reg.SP clusters nodes by regularized spectral clustering

Description

community detection by regularized spectral clustering

Usage
reg.SP(A, K, tau = 1, lap = FALSE,nstart=30,iter.max=100)

Arguments
A adjacency matrix
K number of communities
tau reguarlization parameter. Default value is one. Typically set between O and 1. If
tau=0, no regularization is applied.
lap indicator. If TRUE, the Laplacian matrix for clustering. If FALSE, the adjacency
matrix will be used.
nstart number of random initializations for K-means
iter.max maximum number of iterations for K-means
Details

The regularlization is done by adding a small constant to each element of the adjacency matrix. It
is shown by such perturbation helps concentration in sparse networks. It is shown to give consistent
clustering under SBM.

Value

a list of

cluster cluster labels

loss the loss of Kmeans algorithm
Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu

Maintainer: Tianxi Li <tianxili@umn.edu>
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References

K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional stochastic block-
model. The Annals of Statistics, pages 1878-1915, 2011.

A. A. Amini, A. Chen, P. J. Bickel, and E. Levina. Pseudo-likelihood methods for community
detection in large sparse networks. The Annals of Statistics, 41(4):2097-2122, 2013.

J. Lei and A. Rinaldo. Consistency of spectral clustering in stochastic block models. The Annals of
Statistics, 43(1):215-237, 2014.

C. M. Le, E. Levina, and R. Vershynin. Concentration and regularization of random graphs. Ran-

dom Structures & Algorithms, 2017.

See Also

reg.SP

Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0)

A <- dt$A

sc <- reg.SP(A,K=3,1lap=TRUE)

NMI(sc$cluster,dts$g)

reg.SSP detects communities by regularized spherical spectral clustering

Description

community detection by regularized spherical spectral clustering

Usage

reg.SSP(A, K, tau = 1, lap = FALSE,nstart=30,iter.max=100)

Arguments
A adjacency matrix
K number of communities
tau reguarlization parameter. Default value is one. Typically set between O and 1. If

tau=0, no regularization is applied.
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lap indicator. If TRUE, the Laplacian matrix for clustering. If FALSE, the adjacency
matrix will be used.
nstart number of random initializations for K-means
iter.max maximum number of iterations for K-means
Details

The regularlization is done by adding a small constant to each element of the adjacency matrix. It
is shown by such perturbation helps concentration in sparse networks. The difference from spectral
clustering (reg.SP) comes from its extra step to normalize the rows of spectral vectors. It is proved
that it gives consistent clustering under DCSBM.

Value

a list of

cluster cluster labels

loss the loss of Kmeans algorithm
Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>

References

T. Qin and K. Rohe. Regularized spectral clustering under the degree-corrected stochastic block-
model. In Advances in Neural Information Processing Systems, pages 3120-3128, 2013.

J. Lei and A. Rinaldo. Consistency of spectral clustering in stochastic block models. The Annals of
Statistics, 43(1):215-237, 2014.

See Also

reg.SP

Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0.9,simple=FALSE, power=TRUE)

A <- dt$A
ssc <- reg.SSP(A,K=3,1ap=TRUE)

NMI (ssc$cluster,dt$g)
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RightSC clusters nodes in a directed network by regularized spectral clustering
on right singular vectors

Description

community detection by regularized spectral clustering on right singular vectors

Usage
RightSC(A, K, normal = FALSE)

Arguments
A adjacency matrix of a directed adjacecy matrix
K number of communities
normal indicator. If TRUE, normalization of singular vector rows will be applied, simi-
lar to the spectral spherical clustering.
Details

This is essentially the spectral clustering applied on right singular vectors. It can be used to handle
directed networks where Aij = 1 if and only if i -> j, and the edges tend to have a missing issue
specifically depending on the sender i. More details can be found in Li et. al. (2020).

Value

a list of

cluster cluster labels

loss the loss of Kmeans algorithm
Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu

Maintainer: Tianxi Li <tianxili@umn.edu>

References

Li, T., Levina, E. and Zhu, J., 2023. Community models for networks observed through edge
nominations. Journal of Machine Learning Research, 24(282), pp.1-36.

See Also

reg.SP
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Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0)

A <- dt$A

sc <- RightSC(A,K=2)

SBM.estimate estimates SBM parameters given community labels

Description

estimates SBM parameters given community labels

Usage
SBM.estimate(A, g)

Arguments

A adjacency matrix

g a vector of community labels
Details

maximum likelhood is used

Value
a list of
B estimated block connection probability matrix
Phat estimated probability matrix
g community labels
Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li <tianxili@umn.edu>
References

B. Karrer and M. E. Newman. Stochastic blockmodels and community structure in networks. Phys-
ical Review E, 83(1):016107, 2011.
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See Also

DCSBM.estimate

Examples

dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0)

A <- dt$A

sc <- reg.SP(A,K=3,1ap=TRUE)
sbm <- SBM.estimate(A,sc$cluster)
sbm$B

smooth.oracle oracle smooth graphon estimation

Description

oracle smooth graphon estimation according to given latent positions, based on smooth estimation.

Usage

smooth.oracle(Us,A)

Arguments
Us a vector whose elements are the latent positions of the network nodes under the
graphon model. The dimension of the vector equals the number of nodes in the
network.
A adjacency matrix. It does not have to be unweighted.
Details

Note that the latenet positions are unknown in practice, so this estimation is an oracle estimation
mainly for evaluation purpose. However, if the latenet positions can be approximated estimated, this
function can also be used for estimating the edge probability matrix. This procedure is the M-step
of the algorithm used in Sischka & Kauermann (2022). Our implementation is modified from the
contribution of an anonymous reviewer, leveraging the tools of the sparseFLMM package.

Value

The estimated probability matrix.
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Author(s)

Tianxi Li, Elizaveta Levina, Ji Zhu, Can M. Le
Maintainer: Tianxi Li <tianxili@umn.edu>

References

Sischka, B. and Kauermann, G., 2022. EM-based smooth graphon estimation using MCMC and
spline-based approaches. Social Networks, 68, pp.279-295.

Examples

set.seed(100)
dt <- BlockModel.Gen(10,50,K=2,beta=0.2)

## oracle order
oracle.index <- sort(dt$g,index.return=TRUE)$ix

A <- dt$A[oracle.index,oracle.index]

oracle.est <- smooth.oracle(seq(@,1,length.out=50),A)

USvT estimates the network probability matrix by the improved universal
singular value thresholding

Description
estimates the network probability matrix by the universal singular value thresholding of Chatterjee
(2015), with the improvement mentioned in Zhang et. al. (2017).

Usage
USVT(A)

Arguments

A adjacency matrix

Details

Instead of using the original threshold in Chatterjee (2015), the estimate is generated by taking
the n"(1/3) leading spectral components. The method was mentioned in Zhang et. al. (2017) and
suggested by an anonymous reviewer.

Value

The estimated probability matrix.
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Author(s)

Tianxi Li and Can M. Le

Maintainer: Tianxi Li <tianxili@umn.edu>
References

S. Chatterjee. Matrix estimation by universal singular value thresholding. The Annals of Statistics,
43(1):177-214, 2015. Y. Zhang, E. Levina, and J. Zhu. Estimating network edge probabilities by
neighbourhood smoothing. Biometrika, 104(4):771-783, 2017.

See Also
LSM.PGD

Examples

dt <- RDPG.Gen(n=600,K=2,directed=TRUE)

A <- dt$A

fit <- USVT(A)
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